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Abstract. We present simulations of the basic model of weakly charged polyelectrolyte chains
of variable intrinsic stiffness within the Debye–Hückel approximation. For intrinsically flexible
chains the persistence lengthLP shows a sublinear dependence on the screening lengthrD = 1/κ

in strong contrast to all known analytical approaches which propose an effective exponent of
eithery = 2 or y = 1. The observed exponenty varies as a function of the system parameters.
With increasing intrinsic stiffness the corresponding effective exponenty crosses over to values
of up to 2 when the intrinsic persistence lengthL0 exceeds the electrostatic oneLe. We find
a pronounced minimum ofLP with increasing intrinsic stiffness due to a reduction of entropy.
The concept of a unique persistence length is not applicable for these systems.

1. Introduction and model

The theoretical understanding of polyelectrolytes is weak compared to that of neutral
polymers [1–3]. The long-ranged nature of the Coulomb interaction and the large number
of degrees of freedom of the counterions cause severe problems for an analytical treatment.
While theories mostly discuss dilute solutions, experiments typically are in the semi-dilute
regime, where the chains strongly overlap. Furthermore, experiments as simulations face
severe finite-size effects in the search for general asymptotic behaviour. In such a situation,
computer simulations offer the possibility of building a bridge between basic models
and experiment as they can test theoretical aspects as well as experimentally measurable
quantities under well controlled conditions (see e.g. [4]).

In the first part of the present work [5], the aim is to test certain theoretical concepts for
model systems. The question of whether the theories of Odijk [6] and Skolnick and Fixman
[7] (for the rest of this paper referred to as OSF) remain valid for intrinsically flexible chains
[8, 9] or whether several variationalansatze[10–12] give the right description is addressed
in this work. The second part [13] extends these results towards intrinsically stiff systems.

The polymer is, as in the above papers, modelled by a random walk ofN monomers,
where every(1/f )th monomer is monovalently charged (f is the charge fraction). The
screening of the counterions is accounted for by the Debye–Hückel (or Yukawa) potential
VDH . This is known to be a crude approximation [3, 14]. WithrD = 1/κ being the
screening length it reads

VDH = q2

4πεε0

exp(−κr)

r
= λBkBT

exp(−κr)

r
(1)

where q is the charge per monomer andεε0 is the dielectric constant of the solvent.
λB = q2/4πεε0kBT is the Bjerrum length which describes the strength of the bare Coulomb
interaction and is about 7̊A in water.
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The intrinsic stiffness is varied using a cosine potential with variable amplitude to vary
its strength. This gives the model Hamiltonian

H

kBT
=

N−1∑
i=1

ap(bi+1 · bi ) +
N∑

i=2

i−1∑
j=1

2(qiqj )λB

exp(−κrij )

rij

(2)

whererij = |ri − rj | is the distance between two monomers,A = ap defines the strength
of the angular potential,kB represents the Boltzmann constant andT the temperature.
bi = ri+1 −ri is the bond vector. The bond lengthb = |b| is fixed to one, defining the unit
length. The Bjerrum lengthλB is fixed to one, and the amplitudea of the angular potential
to 2. By variation ofp the intrinsic stiffness is tuned. This is a basic theoretical model
and common starting point for analytical theories, which necessarily include assumptions.
Variation of N, f and κ (16 6 N 6 512, 1

256 6 f 6 1
4, 0.001 6 κ 6 0.48) allows

us to cover the whole experimentally relevant parameter space and to go even beyond
experiment for flexible (p = −∞) chains (equivalent molecular weight for a NaPSS–PS
block copolymer up to 13 000 000 g mol−1) [5]. The results on intrinsically stiff chains
presented here are based on isolated chains ofN = 2049 monomers with every sixteenth
charged (i.e. 129 charges, as the first and the last monomer are charged). This parameter
set is chosen as a good compromise between computational effort to equilibrate the systems
examined and possible finite-size effects.

The chains are simulated by a generalized off-lattice pivot algorithm which includes
rotations of inner parts [15, 16]. (For more details see [5, 15, 16, 13].) The simulations
started from two extreme conformations: the random walk and the totally stretched state.
The runs are considered equilibrated when results coincide for the two sets. The program
runs 576 independent polyelectrolyte chains in parallel giving 576 truly independent states.
For local quantities which allow for an intrachain average the statistics is even better.

2. Flexible chains

We examined chain radii, charge–charge distances, structure factors, persistence lengths
and scaling properties [5, 13]. Here we focus on theκ-dependence of the persistence
length. The electrostatic blob diameterξ [1] and the number of charges per blobge are
calculated directly from our data to avoid unnecessary assumptions. From neutral chains
one would expect a scaling of the chain radii withξ . This however does not work out here.
Obviously the persistence lengthLP is not a simple linear function ofξ . As the persistence
length defines a kind of stiff-chain-segment length, the chain dimensions should show a
characteristic dependency onLP . Therefore we investigateRe plotting R2

e /L
2
P versus the

number of persistence lengths per chain, which is the ratio of contour lengthL andLP :

L

LP

= Nξ

geLP

.

LP is the sum of the intrinsic partL0, which within a blob picture equalsξ , and the
electrostatic contributionLe. All variational theories predictLe ∼ 1/κ. Explicitly for a
blob picture Ha and Thirumalai give [11]

Le ∼ ge

κ

√
λB

ξ
. (3)

The OSF theory [6, 7] predicts

Le = λB

4κ2A2
(4)



The persistence length of polyelectrolyte chains 9465

Figure 1. (a) A scaling plot obtained from the variationalansatze: R2
e /L

2
P versusL/LP . L/LP

is the number of persistence lengths per chain,Le ∼ 1/κ. (b) A scaling plot obtained by the
OSF approach:R2

e /L
2
P versusL/LP . L/LP is the number of persistence lengths per chain,

Le ∼ 1/κ2.

whereA is the distance between two charges along the contour of the chain. Khokhlov and
Katchaturian [8] claim that after averaging over the transversal fluctuations of the flexible
chains the same formalism applies to this ‘renormalized’ chain which is represented by a
chain of blobs. Therefore, within the framework of a blob picture they formulate forLP

explicitly:

Le ∼ λBg2
e

κ2ξ2
. (5)

Figure 1 shows the corresponding scaling plots. There is no way to distinguish them. To
explain this, it is necessary to divide the plots into two parts. For smallX-values the plots
show straight lines with slope two. This is the regime where the chains build up blob poles.
The dependence onLP cancels out. The end-to-end distance is proportional to the number
of blobs times the blob diameter. For larger numbers ofLP per chain the behaviour crosses
over to a regime of slope 1.2. This is a self-avoiding-walk regime where the dependence
on LP is explicit:

R2
e

L2
P

∼ X6/5 = N6/5ξ6/5

g
6/5
e L

6/5
P

⇒ R2
e ∼

(
Nξ

ge

)6/5

L
4/5
P . (6)

Here something should be seen, but theκ-dependence ofRe seems to be too weak, so no
difference can be figured out. As result the demand remains to measure the persistence
length directly.
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A natural approach is the analysis of the bond-angle correlation function BAC defined
via the scalar product of two normalized bond vectors:

BAC(k) =
〈

bj

‖bj‖ · bj+k

‖bj+k‖
〉

= 〈cos[φ(bj , bj+k)]〉 (7)

whereφ(bj , bj+k) is the angle between the two bond vectors and〈· · ·〉 indicates the average
over all polymers.

Figure 2. (a) The logarithm of the bond-angle correlation function forN = 16 384, f = 1
64

and the specifiedκ-values. (b) The persistence length based on ln(BAC) versus 1/κ. The
two lines in the upper left-hand corner indicate the slopes predicted by OSF (dashed) and the
variational methods (solid). The model system should give the best description for weakly
charged polyelectrolytes and therefore the upper curves.

Since the persistence length is defined as the decay contour length of all angular
correlations, BAC should show—after some ‘transient time’ representing the inner part
of the blob—an exponential decay, similar to the case of a wormlike chain for which the
following applies:

BAC(k) ∼ exp

(
− k

LP

)
(8)

giving

B(k) = ln〈cosφ(bj , bj+k)〉 ∼ ln exp

(
− k

LP

)
= − k

LP

(9)

(see figure 2(a)).
All systems lead to the same answer: the effective exponenty of the κ-dependence of

the persistence length for flexible systems is continuously varying and smaller than one (see
figure 2(b)):

LP ∼ 1

κy
y < 1. (10)
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No unique power law can be derived, even if finite-size effects and the statistical errors of the
data are taken into account. This result is in strong contrast to all known analytical results!
Recently, a new field theoretical approach was suggested pointing towards a sublinear
behaviour [17]. The common tendency with our data is encouraging; however, no mapping
of the data has been possible so far.

To examine the chain conformation in detail at all length scales we calculate the
spherically averaged structure factorS(q):

S(q) =
〈

1

N

∣∣∣∣∣ N∑
i<j

exp(iq · (ri − rj ))

∣∣∣∣∣
2〉

. (11)

The structure factor reveals all the former results. The chain conformation varies between
SAW and almost rodlike behaviour (RG ∼ N0.58 − N0.92). S(q) along the first main axis
of gyration showsκ- andf -dependent oscillations that are typical for rods. Perpendicular
to that axis, the chain conformation is similar to the spherically averaged quantity. There
is definitively no random-walk behaviour as claimed by several analytical approaches (see
e.g. [8]). Viewing a polyelectrolyte chain in an extremely oversimplified way as a random
walk composed of rodlike segments of lengthLP shows that there has to be a kink between
two regions of different slopes inS(q). Using this kink to derive a measure for the
persistence length, again the sublinear behaviour is regained. So all former results are
recovered, impressively showing the overall consistency of the present analysis.

3. Stiff chains

Intrinsic stiffness is introduced (see equation (2)) to study the development of theκ-
dependence of the electrostatic persistence lengthLe and to get further insight in the chain
structure.LP is again deduced from the BAC. AsLP is the sum ofL0 andLe, L0 has to be
calculated from simulations on neutral chains first. Then the analysis of theκ-dependence
of Le is straightforward [13].

We demonstrate the crossover from the sublinear behaviour of intrinsically flexible
chains to exponents larger than one for intrinsically rather stiff systems forp = 2, 5, 7, 9
(see figure 3). p = 2 causes a rather small intrinsic persistence length and therefore
the κ-dependence ofLe is completely analogous to flexible polyelectrolytes ([5]). For
p = 5, 7, 9, L0 crosses over from being smaller to becoming comparable and then larger
thanLe. In this region the effective exponenty crosses the value of one towards two which
is the limit of the original analytical treatment [6, 7]. AsLe is smaller for largerκ, the
crossover depends strongly on the screening. Our data reproduce the variational results
[10–12] for Le ∼ L0.

Our results underline the strong coupling between the chain conformation and the
electrostatic effects destroying the basic assumption of the OSF approach and its extensions
(see e.g. [8, 9]) for flexible systems. Only ifL0 � Le do the exponents approach the OSF
value y = 2. In this case the intrinsic stiffness is so dominating that the influence of the
electrostatic contribution on the conformation is very small. In this sense we cover the
whole parameter space towards very stiff polymers and find the expected behaviour.

Much more striking is the behaviour of the whole persistence lengthLP , as taken from
the long-range decay of BAC.LP shows a pronounced minimum as a function ofL0 (see
figure 4) [13]. This means that increasing the intrinsic stiffness and thereby increasing the
end-to-end distance causes a reduction of the persistence length! It is obvious from our data
that the entropic part of the free energy is underestimated by all known analytical approaches
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Figure 3. The electrostatic persistence length as a function of 1/κ for severalp-values.

Figure 4. (a) The persistence length as a function of the intrinsic stiffness. (b)B(k) = ln(BAC)
for κ = 0.01 and severalp-values.

for flexible systems for (at least) all relevant chain lengths. The onset of intrinsic stiffness
destroys a large amount of the entropy of the neutral chains in between the charges. This is
demonstrated by the strong increase of the distance between two adjacent charges [15] and
snapshots of typical configurations [16]. The data demonstrate that the system is governed
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Figure 5. (a)LP calculated with the wormlike chain formalism. (b)LP calculated by integrating
the bond-angle correlation function.

by two distinct length scales, as figure 4 shows. Due to this the bending rigidity becomes
length scale dependent.

In experiments this effect normally is not observed, because one needs models to extract
a persistence length from the data. Usually, the Kratky–Porod model [18] describing
wormlike chains is used to calculateLP from the end-to-end distance [19]. Use of this
expression misses the importance of different length scales. Figure 5 demonstrates this
by showing the persistence length calculated from our data using the wormlike chain
formalism. The striking minimum has vanished. Even calculatingLP from its most direct
geometric definition [20] or, similarly, integrating the bond-angle correlation function does
not reproduce the minimum, because these two methods mix the two different length scales
(see figure 5), so the information on the two different length scales is lost. It is not sufficient
to use one numberLP to describe the main features of the chain conformation.

4. Conclusions

We present extensive, systematic simulations to examine the behaviour of single weakly
charged polyelectrolyte chains under variation of the intrinsic stiffness.

For flexible chains a crossover from blob pole behaviour to a SAW structure is found.
None of the known analyticansatzeare able to describe the chain conformation and the
sublinearκ-dependence of the electrostatic persistence lengthLe correctly: Le ∼ κ−y; y =
y(κ, f ) < 1!

Introducing intrinsic stiffness shows that the parameter space is split in three regions:
as long as the intrinsic persistence lengthL0 is small, y is smaller than one. WhenL0

becomes comparable withLe the exponent reflects the variational predictiony = 1. Only
if L0 � Le can the OSF valuey = 2 be recovered. In this case the electrostatic interaction
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and the chain conformation are almost completely decoupled.
The whole persistence lengthLP is characterized by a pronounced minimum as a

function ofL0 caused by a subtle interplay of the intrinsic and the electrostatic contributions.
The stretching on small and medium length scales due to the intrinsic stiffness causes a
decrease ofLe that is much faster than the corresponding increase ofL0. This introduces
a second relevant length scale. By this mechanism the influence of the Debye–Hückel
potential and thereby ofLe is reduced significantly. Experiments need to measure length-
scale- orq-dependent quantities to obtain this detailed information. Using ‘simple’ models
leads to a loss of important knowledge on the chain structure. Equivalently, theory has to
take this effect into account and cannot claim that just one length scale represented by one
value forLP describes the whole chain conformation.
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